Title: | Colors for all |
---|---|
Description: | Color palettes for all people, including those with color vision deficiency. Popular color palette series have been organized by type and have been scored on several properties such as color-blind-friendliness and fairness (i.e. do colors stand out equally?). Own palettes can also be loaded and analysed. Besides the common palette types (categorical, sequential, and diverging) it also includes cyclic and bivariate color palettes. Furthermore, a color for missing values is assigned to each palette. |
Authors: | Martijn Tennekes [aut, cre], Marco Puts [ctb], Achim Zeileis [ctb], Jakub Nowosad [ctb], Robin Lovelace [ctb], Helgasoft [ctb], Matthew Petroff [ctb], Olivier Roy [ctb] |
Maintainer: | Martijn Tennekes <[email protected]> |
License: | GPL-3 |
Version: | 0.8 |
Built: | 2025-01-21 05:26:41 UTC |
Source: | https://github.com/mtennekes/cols4all |
cols4all stands for: color palettes for all people, including those with color vision deficiency. Popular color palette series, such as ColorBrewer, have been organized by type and have been scored on several properties such as color-blind-friendliness and fairness (i.e. do colors stand out equally?). Own palettes can also be loaded and analysed. Besides the common palette types (categorical, sequential, and diverging) it also includes bivariate color palettes. ggplot2 scales are included.
This page provides a brief overview of all package functions.
c4a_gui
|
Dashboard for analyzing the palettes |
c4a
|
Get the colors from a palette (c4a_na for the associated color for missing values) |
c4a_plot
|
Plot a color palette |
c4a_palettes
|
Get available palette names |
c4a_series
|
Get available series names |
c4a_overview
|
Get an overview of palettes per series x type |
c4a_citation
|
Show how to cites palettes (with bibtex code) |
c4a_info
|
Get information from a palette, such as type and maximum number of colors) |
.P
|
Environment via which palette names can be browsed with auto-completion (using $ ) |
c4a_data
|
Build color palette data |
c4a_load
|
Load color palette data |
c4a_sysdata_import
|
Import system data |
c4a_sysdata_export
|
Export system data |
Maintainer: Martijn Tennekes [email protected]
Other contributors:
Marco Puts [email protected] [contributor]
Achim Zeileis [email protected] [contributor]
Jakub Nowosad [email protected] [contributor]
Robin Lovelace [email protected] [contributor]
Helgasoft [email protected] [contributor]
Matthew Petroff [email protected] [contributor]
Olivier Roy [contributor]
Useful links:
Report bugs at https://github.com/mtennekes/cols4all/issues
Get a cols4all color palette: c4a
returns the colors of the specified palette, c4a_na
returns the color for missing value that is associated with the specified palette, and c4a_ramp
returns a color ramp function. Run c4a_gui
to see all available palettes, which are also listed with c4a_palettes
.
c4a( palette = NULL, n = NA, m = NA, type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), reverse = FALSE, order = NULL, range = NA, colorsort = "orig", format = c("hex", "rgb", "hcl", "RGB", "XYZ", "HSV", "HLS", "LAB", "polarLAB", "LUV", "polarLUV"), nm_invalid = c("error", "repeat", "interpolate"), verbose = TRUE ) c4a_ramp(..., space = c("rgb", "Lab"), interpolate = c("linear", "spline")) c4a_na( palette = NULL, type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), verbose = TRUE )
c4a( palette = NULL, n = NA, m = NA, type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), reverse = FALSE, order = NULL, range = NA, colorsort = "orig", format = c("hex", "rgb", "hcl", "RGB", "XYZ", "HSV", "HLS", "LAB", "polarLAB", "LUV", "polarLUV"), nm_invalid = c("error", "repeat", "interpolate"), verbose = TRUE ) c4a_ramp(..., space = c("rgb", "Lab"), interpolate = c("linear", "spline")) c4a_na( palette = NULL, type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), verbose = TRUE )
palette |
name of the palette. See |
n |
number of colors. If omitted then: for type |
m |
number of rows in case type is bivariate, so one of |
type |
type of color palette, in case |
reverse |
should the palette be reversed? |
order |
order of colors. Only applicable for |
range |
a vector of two numbers between 0 and 1 that determine the range that is used for sequential and diverging palettes. The first number determines where the palette begins, and the second number where it ends. For sequential |
colorsort |
Sort the colors. Options: |
format |
format of the colors. One of: |
nm_invalid |
what should be done in case |
verbose |
should messages be printed? |
... |
passed on to |
space |
a character string; interpolation in RGB or CIE Lab color spaces |
interpolate |
use spline or linear interpolation |
A vector of colors (c4a
) and a color (c4a_na
)
# get the colors from brewer.set3 and plot them set3 <- c4a("brewer.set3") c4a_plot_hex(set3, nrows = 1) c4a("hcl.set2", n = 36) |> c4a_plot_hex() c4a("-hcl.set2", n = 12) |> c4a_plot_hex() # how to know which palettes are avaiable? # 1) Via the interactive tool: ## Not run: c4a_gui() ## End(Not run) # 2) Via the overview function: c4a_palettes(type = "cat") c4a_palettes(series = "brewer") c4a_palettes(type = "cat", series = "brewer") # Run c4a_overview() to see which are available # 3) Via .P .P$brewer$cat$set3 # each palette contains a color for missing values c4a("carto.safe", 7) c4a_na("carto.safe") c4a_plot_hex("carto.safe", n = 7, include.na = TRUE) c4a_plot_hex("carto.safe", n = 7, include.na = TRUE) # same (but shorter) as # c4a_plot_hex(c(c4a("carto.safe", 7), c4a_na("carto.safe")), include.na = TRUE) # color ramp c4a("viridis", 100) |> c4a_plot() c4a_ramp("viridis")(100) |> c4a_plot()
# get the colors from brewer.set3 and plot them set3 <- c4a("brewer.set3") c4a_plot_hex(set3, nrows = 1) c4a("hcl.set2", n = 36) |> c4a_plot_hex() c4a("-hcl.set2", n = 12) |> c4a_plot_hex() # how to know which palettes are avaiable? # 1) Via the interactive tool: ## Not run: c4a_gui() ## End(Not run) # 2) Via the overview function: c4a_palettes(type = "cat") c4a_palettes(series = "brewer") c4a_palettes(type = "cat", series = "brewer") # Run c4a_overview() to see which are available # 3) Via .P .P$brewer$cat$set3 # each palette contains a color for missing values c4a("carto.safe", 7) c4a_na("carto.safe") c4a_plot_hex("carto.safe", n = 7, include.na = TRUE) c4a_plot_hex("carto.safe", n = 7, include.na = TRUE) # same (but shorter) as # c4a_plot_hex(c(c4a("carto.safe", 7), c4a_na("carto.safe")), include.na = TRUE) # color ramp c4a("viridis", 100) |> c4a_plot() c4a_ramp("viridis")(100) |> c4a_plot()
Show how to cite palettes
c4a_citation(name, verbose = TRUE)
c4a_citation(name, verbose = TRUE)
name |
name of a palette or series |
verbose |
should text be printed (if FALSE only a |
utils::bibentry
object
c4a_citation("hcl") c4a_citation("poly.glasbey")
c4a_citation("hcl") c4a_citation("poly.glasbey")
Build palette data. Both c4a_data
and c4a_data_as_is
build data palette. The difference is that the former may restructure the palette colors (see details) whereas the latter takes the palette colors as they are. Data can subsequently be loaded into cols4all via c4a_load
. The c4a_data
function can also be used to read c4a_info
objects, which contain data for a single palette.
c4a_data( x, xNA = NA, types = "cat", series = "x", nmin = NA, nmax = NA, ndef = NA, mmin = NA, mmax = NA, mdef = NA, format.palette.name = TRUE, remove.blacks = NA, remove.whites = NA, take.gray.for.NA = FALSE, remove.other.grays = FALSE, light.to.dark = FALSE, remove.names = TRUE, biv.method = "byrow", space = "rgb", range_matrix_args = list(NULL), bib = NA, description = NA ) c4a_load(data, overwrite = FALSE) c4a_data_as_is( ..., format.palette.name = FALSE, remove.blacks = FALSE, remove.whites = FALSE, take.gray.for.NA = FALSE, remove.other.grays = FALSE, light.to.dark = FALSE, remove.names = FALSE )
c4a_data( x, xNA = NA, types = "cat", series = "x", nmin = NA, nmax = NA, ndef = NA, mmin = NA, mmax = NA, mdef = NA, format.palette.name = TRUE, remove.blacks = NA, remove.whites = NA, take.gray.for.NA = FALSE, remove.other.grays = FALSE, light.to.dark = FALSE, remove.names = TRUE, biv.method = "byrow", space = "rgb", range_matrix_args = list(NULL), bib = NA, description = NA ) c4a_load(data, overwrite = FALSE) c4a_data_as_is( ..., format.palette.name = FALSE, remove.blacks = FALSE, remove.whites = FALSE, take.gray.for.NA = FALSE, remove.other.grays = FALSE, light.to.dark = FALSE, remove.names = FALSE )
x |
either a named list of color palettes or a |
xNA |
colors for missing values. Vector of the same length as x (or length 1). For |
types |
character vector of the same length as x (or length 1), which determines the type of palette: |
series |
a character vector of the same length as x (or length 1), which determines the series. |
nmin , nmax , ndef
|
minimum / maximum / default number of colors for the palette. By default: |
mmin , mmax , mdef
|
minimum / maximum / default number of rows for bivariate palettes. |
format.palette.name |
should palette names be formatted to lowercase/underscore format? |
remove.blacks , remove.whites , take.gray.for.NA , remove.other.grays
|
These arguments determine the processing of grayscale colors for categorical |
light.to.dark |
should sequential |
remove.names |
should individual color names be removed? |
biv.method |
method to a create bivariate palette. Options are |
space |
color space in which interpolated colors are determined. Options: |
range_matrix_args |
list of lists, one for each palette. Each such list specifies the range of sequential and diverging palettes, in case they are not indexed. See details. |
bib |
bibtex reference in the form of a |
description |
description of the series. If |
data |
cols4all data created with |
overwrite |
in case the palettes already exist (i.e. the full names), should the old names be overwritten? |
... |
passed on to |
In cols4all, palettes are organized by series and by type. The series or 'family' specifies where the palettes belong to. For instance "brewer"
stands for the color palettes from ColorBrewer. Run c4a_series
to get an overview of loaded series. The type specifies what kind of palette it is; see c4a_types
for a description of the implemented ones.
This function structures the palette data, such that it is consistent with the other palette data. This includes:
Palette names are made consistent. We use the convention "my_series.my_palette"
, so all lower case, a period to separate the series name from the palette name, and underscores to separate words.
(Only for c4a_data
, bypassed for c4a_data_as_is
) Categorical palettes: black is removed from categorical palettes, and a grayscale color is assigned to be used for missing values (other grayscale colors are removed). Sequential palettes are sorted from light to dark.
Indexing: for a categorical "cat"
palette, an optional "index"
attribute determines which colors to use for which lengths: if the palette consists of k colors, index should be a list of k, where the i-th element is an integer vector of length i with values 1,2,...,k. See c4a_info("rainbow")
and for an example.
Range: sequential and diverging palettes are usually defined for 9+ colors. The optional "range_matrix"
attribute determines that range is used for less colors. It is a n x 2 matrix where row i defines the applied range of a palette of length i. For sequential palettes a range c(0,1)
means that the palette is generated (via a color ramp) between the two outermost colors. For diverging palettes, a range c(x, y)
means that both sides of the palette are generated (via a color ramp) from x
, which is the distance to the center color, to y
which represents both outermost colors.
The range is automatically set for sequential and diverging palettes that have no "index"
or "range_matrix"
attribute via the parameter range_matrix_args
, which is a list per palette. The arguments for a sequential palette are: nmin
the minimum number of colors for which the range is reduced, nmax
, the number of colors for which the range is set to c(0,1)
, slope_min
and slope_max
determine the slopes of range reduction from a palette of length nmax
to nmin
, and space
sets the color space for which the color ramp is applied ("rgb"
or "Lab"
). The arguments for a diverging palette are the same, but only one slope
is used (namely for the outermost colors).
It may take some time to process, especially large categorical palettes, because of calculations of the color blind checks.
c4a_data
object, which is a list of four items: data
, s
, citation
, and description
# palettes extracted Pink Floyd albums pf = list(piper = c("#391C1C", "#C6C6AA", "#713939", "#C6391C", "#C6E3C6", "#AA7155", "#AA8E71", "#C68E71"), saucerful = c("#000000", "#1C1C1C", "#393939", "#FFFFFF", "#555555", "#8E8E71", "#E3C6AA", "#715539"), atom = c("#C6E3FF", "#397139", "#557139", "#E3E3C6", "#1C1C1C", "#1C551C", "#AAAA8E", "#8EC6E3"), meddle = c("#715539", "#553939", "#8E7155", "#71AAAA", "#8E8E71", "#1CAAE3", "#55C6E3", "#AA7155"), obscured = c("#000000", "#1C1C1C", "#393939", "#717155", "#8E8E71", "#715539", "#C6AA8E", "#E3C6AA"), moon = c("#000000", "#FF0000", "#FF9224", "#FFFF00", "#71C600", "#00C6FF", "#8E398E", "#FFFFFF"), wish = c("#FFFFFF", "#AAC6E3", "#8E8E8E", "#717155", "#555539", "#8E8E71", "#555555", "#8E7155"), animals = c("#391C39", "#393955", "#E3C671", "#718E8E", "#AAAA8E", "#C67139", "#AA5539", "#E3AA39"), wall = c("#FFFFFF", "#E3E3E3", "#C6C6C6", "#AAAAC6", "#1C1C1C", "#000000", "#8E8E8E", "#E3C6E3"), cut = c("#000000", "#E30000", "#AA0000", "#391C55", "#FFE3E3", "#1C1C00", "#FFAA55", "#8E8E55"), lapse = c("#000000", "#8E8EC6", "#8E8E71", "#7171AA", "#39391C", "#717171", "#AAAAAA", "#E3E3E3"), division = c("#000000", "#FFFFC6", "#00398E", "#AA8E55", "#39558E", "#C6AA71", "#39391C", "#555571"), more = c("#0055AA", "#FFAA1C", "#1C71AA", "#003971", "#E38E55", "#E3AAAA", "#718EAA", "#71718E"), umma = c("#AA8E71", "#555539", "#39391C", "#1C1C1C", "#E3E3C6", "#715539", "#391C1C", "#8E7155"), relics = c("#3955AA", "#1C3971", "#5571C6", "#715555", "#8E7155", "#E3AA71", "#8E8EAA", "#E3FFFF"), river = c("#393939", "#555555", "#39558E", "#C6C6C6", "#718EAA", "#1C1C1C", "#717171", "#E3C68E")) if (requireNamespace("colorblindcheck", quietly = TRUE)) { pfdata = c4a_data_as_is(pf, series = "pinkfloyd", description = "Palettes extracted from Pink Floyd album covers") c4a_load(pfdata) c4a_series() c4a_overview() if (requireNamespace("shiny") && requireNamespace("shinyjs") && requireNamespace("kableExtra") && requireNamespace("colorblindcheck") && requireNamespace("plotly") && interactive()) { c4a_gui(series = "pinkfloyd", n = 8) } }
# palettes extracted Pink Floyd albums pf = list(piper = c("#391C1C", "#C6C6AA", "#713939", "#C6391C", "#C6E3C6", "#AA7155", "#AA8E71", "#C68E71"), saucerful = c("#000000", "#1C1C1C", "#393939", "#FFFFFF", "#555555", "#8E8E71", "#E3C6AA", "#715539"), atom = c("#C6E3FF", "#397139", "#557139", "#E3E3C6", "#1C1C1C", "#1C551C", "#AAAA8E", "#8EC6E3"), meddle = c("#715539", "#553939", "#8E7155", "#71AAAA", "#8E8E71", "#1CAAE3", "#55C6E3", "#AA7155"), obscured = c("#000000", "#1C1C1C", "#393939", "#717155", "#8E8E71", "#715539", "#C6AA8E", "#E3C6AA"), moon = c("#000000", "#FF0000", "#FF9224", "#FFFF00", "#71C600", "#00C6FF", "#8E398E", "#FFFFFF"), wish = c("#FFFFFF", "#AAC6E3", "#8E8E8E", "#717155", "#555539", "#8E8E71", "#555555", "#8E7155"), animals = c("#391C39", "#393955", "#E3C671", "#718E8E", "#AAAA8E", "#C67139", "#AA5539", "#E3AA39"), wall = c("#FFFFFF", "#E3E3E3", "#C6C6C6", "#AAAAC6", "#1C1C1C", "#000000", "#8E8E8E", "#E3C6E3"), cut = c("#000000", "#E30000", "#AA0000", "#391C55", "#FFE3E3", "#1C1C00", "#FFAA55", "#8E8E55"), lapse = c("#000000", "#8E8EC6", "#8E8E71", "#7171AA", "#39391C", "#717171", "#AAAAAA", "#E3E3E3"), division = c("#000000", "#FFFFC6", "#00398E", "#AA8E55", "#39558E", "#C6AA71", "#39391C", "#555571"), more = c("#0055AA", "#FFAA1C", "#1C71AA", "#003971", "#E38E55", "#E3AAAA", "#718EAA", "#71718E"), umma = c("#AA8E71", "#555539", "#39391C", "#1C1C1C", "#E3E3C6", "#715539", "#391C1C", "#8E7155"), relics = c("#3955AA", "#1C3971", "#5571C6", "#715555", "#8E7155", "#E3AA71", "#8E8EAA", "#E3FFFF"), river = c("#393939", "#555555", "#39558E", "#C6C6C6", "#718EAA", "#1C1C1C", "#717171", "#E3C68E")) if (requireNamespace("colorblindcheck", quietly = TRUE)) { pfdata = c4a_data_as_is(pf, series = "pinkfloyd", description = "Palettes extracted from Pink Floyd album covers") c4a_load(pfdata) c4a_series() c4a_overview() if (requireNamespace("shiny") && requireNamespace("shinyjs") && requireNamespace("kableExtra") && requireNamespace("colorblindcheck") && requireNamespace("plotly") && interactive()) { c4a_gui(series = "pinkfloyd", n = 8) } }
Graphical user interface to analyse palettes. c4a_table
shows a table that can be opened in the browser. c4a_gui
is a graphical user interface (shiny app) around this table.
c4a_gui(type = "cat", n = NA, series = "all") c4a_table( type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), n = NULL, m = NULL, continuous = FALSE, filters = character(0), cvd.sim = c("none", "deutan", "protan", "tritan"), sort = "name", text.format = "hex", text.col = "same", series = "all", range = NA, colorsort = "orig", include.na = FALSE, show.scores = FALSE, columns = NA, verbose = TRUE )
c4a_gui(type = "cat", n = NA, series = "all") c4a_table( type = c("cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), n = NULL, m = NULL, continuous = FALSE, filters = character(0), cvd.sim = c("none", "deutan", "protan", "tritan"), sort = "name", text.format = "hex", text.col = "same", series = "all", range = NA, colorsort = "orig", include.na = FALSE, show.scores = FALSE, columns = NA, verbose = TRUE )
type |
type of palette. Run |
n , m
|
|
series |
Series of palettes to show. See |
continuous |
should the palettes as continuous instead of discrete. Only applicable for |
filters |
filters to be applied. A character vector with a subset from: |
cvd.sim |
color vision deficiency simulation: one of |
sort |
column name to sort the data. The available column names depend on the arguments |
text.format |
The format of the text of the colors. One of |
text.col |
The text color of the colors. By default |
range |
vector of two numbers that determine the range that is used for sequential and diverging palettes. Both numbers should be between 0 and 1. The first number determines where the palette begins, and the second number where it ends. For sequential palettes, 0 means the leftmost (normally lightest) color, and 1 the rightmost (often darkest) color. For diverging palettes, 0 means the middle color, and 1 both extremes. If only one number is provided, this number is interpreted as the endpoint (with 0 taken as the start). By default, it is set automatically, based on |
colorsort |
Sort the colors ( |
include.na |
should color for missing values be shown? |
show.scores |
should scores of the quality indicators be printed? See details for a description of those indicators. |
columns |
number of columns. By default equal to |
verbose |
should messages and warnings be printed? |
See vignette how the properties are calculated. Parameters, such as threshold values which determined when palettes are classified as "colorblind-friendly", can be specified via c4a_options
. Also the nameability score function (which is in development) can be specified there. See the examples of c4a_options
for both use cases.
An HMTL table (kableExtra
object)
References of the palettes: cols4all-package
.
if (requireNamespace("shiny") && requireNamespace("shinyjs") && requireNamespace("kableExtra") && requireNamespace("colorblindcheck") && interactive()) { c4a_gui() # categorical palettes with maximum number of colors c4a_table(type = "cat") # sort sequential palettes by hue c4a_table(type = "seq", n = 7, sort = "H") # sort sequential palettes by hue type (how many hues are used) c4a_table(type = "seq", n = 5, sort = "hues") }
if (requireNamespace("shiny") && requireNamespace("shinyjs") && requireNamespace("kableExtra") && requireNamespace("colorblindcheck") && interactive()) { c4a_gui() # categorical palettes with maximum number of colors c4a_table(type = "cat") # sort sequential palettes by hue c4a_table(type = "seq", n = 7, sort = "H") # sort sequential palettes by hue type (how many hues are used) c4a_table(type = "seq", n = 5, sort = "hues") }
Get information from a cols4all palette
c4a_info(palette, no.match = c("message", "error", "null"), verbose = TRUE)
c4a_info(palette, no.match = c("message", "error", "null"), verbose = TRUE)
palette |
name of the palette |
no.match |
what happens is no match is found? Options: |
verbose |
should messages be printed? |
list with the following items: name, series, fullname, type, palette (colors), na (color), nmax, and reverse. The latter is TRUE
when there is a "-"
prefix before the palette name.
Edit cols4all palettes. c4a_duplicate duplicates an existing cols4all palette, and c4a_modify is used to change the colors. Use c4a_data to craete palettes from scratch.
c4a_modify(palette, x = NULL, xNA = NULL) c4a_duplicate(palette, name = NA)
c4a_modify(palette, x = NULL, xNA = NULL) c4a_duplicate(palette, name = NA)
palette |
name of the palette |
x |
vector of the new colors. It should either the same length, or a named vector, where the names correspond to the index numbers. E.g. |
xNA |
the new color for missing values. |
name |
name of new palette |
c4a_duplicate("brewer.set2", "set2_mod") c4a_modify("set2_mod", c("4" = "#EA8AB8"))
c4a_duplicate("brewer.set2", "set2_mod") c4a_modify("set2_mod", c("4" = "#EA8AB8"))
Get or set global options for c4a. Works similar as the base function options
c4a_options(...)
c4a_options(...)
... |
Use character values to retrieve options. To set options, either use named arguments (where the names refer to the options), a list that consists of those options. |
Option | Description |
defaults | Default palettes per type |
CBF_th | Parameters that label a palette as color blind friendly |
CBVF_th | Parameters that label a palette as very color blind friendly |
CBU_th | Parameters that label a palette as color blind unfriendly |
CrangeFair | Maximum chroma range for which a palette is considered harmonic |
CrangeUnfair | Minimum chroma range for which a palette is considered disharmonic |
LrangeFair | Maximum luminance range for which a palette is considered harmonic |
LrangeUnfair | Minimum luminance range for which a palette is considered disharmonic |
Cintense | Chroma of colors that are considered intense |
Cpastel | Chroma of colors that are considered 'pastel' |
HwidthDivRainbow | A diverging palette is labeled as 'rainbow hue' if HwidthL or HwidthR are at least HwidthDivRainbow |
HwidthDivSingle | A diverging palette is labeled as 'single hue' if HwidthL and HwidthR are at most HwidthDivSingle |
HwidthSeqRainbow | A sequential palette is labeled as 'rainbow hue' if Hwidth is at least HwidthSeqRainbow |
HwidthSeqSingle | A sequential palette is labeled as 'single hue' if Hwidth is at most HwidthSeqSingle |
naming_fun | Function that returns a distance matrix with the naming_colors (see examples) |
naming_fun_args | List of arguments for naming_fun |
naming_colors | Vector of prototype colors for the color names (see examples) |
naming_softmax | List of parameters for the softmax function applied to the distance matrix |
A list of options
# Example how to lower the color-blind friendly threshold # for categorical palettes (so more smileys in the GUI!) # CBF_th: one smiley # CBVF_th: two smileys # current table ## Not run: c4a_table(n = 9, sort = "cbfriendly") opts = c4a_options("CBF_th", "CBVF_th") opts$CBF_th$cat["min_dist"] = 7 opts$CBVF_th$cat["min_dist"] = 10 old = c4a_options(opts) # more smileys :-) :-) c4a_table(n = 9, sort = "cbfriendly") # set the old settings back c4a_options(old) ## End(Not run) # Example how to use own nameability function # # This function should: # - have an argument "pal" (vector of colors) # - optionally have other arguments # - return a distance matrix of n rows (length of pal) and k columns (classes). # It shoud have columns names that correspond to the naming colors (see below). naming_RGB = function(pal) { cols = colorspace::hex2RGB(pal) coords = cols@coords cls = apply(coords, MARGIN = 1, which.max) mx = apply(coords, MARGIN = 1, max) dominance = ((mx + 0.001) / (rowSums(coords) + 0.001)) cls[dominance < 0.4] = 4L m = matrix(0, nrow = length(pal), ncol = 4, dimnames = list(NULL, c("Red", "Green", "Blue", "Other"))) for (i in 1:nrow(m)) { m[i, cls[i]] = 1 } -m } # testing this function... naming_RGB(c4a("brewer.set1")) #fair enough # This vector should contain the 'prototype' colors, and have names that correspond # to the column names of the returned matrices by the function above. names_RGB = c("Red" = "#FF0000", "Green" = "#00FF00", "Blue" = "#0000FF", "Other" = "#AAAAAA") # Set the options (may take a while because if calculated the nameability scores) ## Not run: c4a_options(naming_fun = naming_RGB, naming_fun_args = list(), naming_colors = names_RGB) ## End(Not run)
# Example how to lower the color-blind friendly threshold # for categorical palettes (so more smileys in the GUI!) # CBF_th: one smiley # CBVF_th: two smileys # current table ## Not run: c4a_table(n = 9, sort = "cbfriendly") opts = c4a_options("CBF_th", "CBVF_th") opts$CBF_th$cat["min_dist"] = 7 opts$CBVF_th$cat["min_dist"] = 10 old = c4a_options(opts) # more smileys :-) :-) c4a_table(n = 9, sort = "cbfriendly") # set the old settings back c4a_options(old) ## End(Not run) # Example how to use own nameability function # # This function should: # - have an argument "pal" (vector of colors) # - optionally have other arguments # - return a distance matrix of n rows (length of pal) and k columns (classes). # It shoud have columns names that correspond to the naming colors (see below). naming_RGB = function(pal) { cols = colorspace::hex2RGB(pal) coords = cols@coords cls = apply(coords, MARGIN = 1, which.max) mx = apply(coords, MARGIN = 1, max) dominance = ((mx + 0.001) / (rowSums(coords) + 0.001)) cls[dominance < 0.4] = 4L m = matrix(0, nrow = length(pal), ncol = 4, dimnames = list(NULL, c("Red", "Green", "Blue", "Other"))) for (i in 1:nrow(m)) { m[i, cls[i]] = 1 } -m } # testing this function... naming_RGB(c4a("brewer.set1")) #fair enough # This vector should contain the 'prototype' colors, and have names that correspond # to the column names of the returned matrices by the function above. names_RGB = c("Red" = "#FF0000", "Green" = "#00FF00", "Blue" = "#0000FF", "Other" = "#AAAAAA") # Set the options (may take a while because if calculated the nameability scores) ## Not run: c4a_options(naming_fun = naming_RGB, naming_fun_args = list(), naming_colors = names_RGB) ## End(Not run)
c4a_palettes
lists all available cols4all color palettes. Palettes are organized by series. The available series are listed with c4a_series
. Palettes are also organized per functional type, where we currently support: categorical "cat"
, sequential "seq"
, diverging "div"
", cyclic "cyc"
, and bivariate (seq x seq "bivs"
, seq x cat "bivc"
, seq x div "bivd"
, seq x desaturated "bivg"
) palette types. The function c4a_types
lists all available types. The function c4a_overview
gives an overview table of the number of palette per series and type. In an IDE with auto-completion (such as RStudio) it is possible to browse through the palette names with .P
(using $
like in lists).
c4a_palettes( type = c("all", "cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), series = NULL, full.names = TRUE ) c4a_series(type = c("all", "cat", "seq", "div", "cyc"), as.data.frame = TRUE) c4a_types(series = NULL, as.data.frame = TRUE) c4a_overview(return.matrix = FALSE, zero.count.as.NA = FALSE) .P
c4a_palettes( type = c("all", "cat", "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"), series = NULL, full.names = TRUE ) c4a_series(type = c("all", "cat", "seq", "div", "cyc"), as.data.frame = TRUE) c4a_types(series = NULL, as.data.frame = TRUE) c4a_overview(return.matrix = FALSE, zero.count.as.NA = FALSE) .P
type |
type of color palette: one of |
series |
series to list the palettes from. Run |
full.names |
should full names, i.e. with the prefix "series."? By default |
as.data.frame |
should |
return.matrix |
should only a matrix be returned with numbers per palette and type? If |
zero.count.as.NA |
should zeros counted in the table be returned as 0 ( |
An object of class environment
of length 17.
names of the loaded color palettes
References of the palettes: cols4all-package
.
c4a_series() c4a_types() c4a_overview() c4a_palettes(type = "cat", series = "tol") c4a_palettes(type = "seq", series = "kovesi") # handy when auto-completion is available: .P$kovesi$seq$linear_terrain
c4a_series() c4a_types() c4a_overview() c4a_palettes(type = "cat", series = "tol") c4a_palettes(type = "seq", series = "kovesi") # handy when auto-completion is available: .P$kovesi$seq$linear_terrain
Plot a color palette, either a cols4all palette, or a color vector. c4a_plot_cvd
is a shortcut to include color-blind simulated colors, 'c4a_plot_hex is a shortcut to print hex codes instead of labels.
c4a_plot( palette, ..., dark = FALSE, include.na = FALSE, hex = FALSE, include.cvd = FALSE, nrows = NA, ncols = NA ) c4a_plot_cvd(...) c4a_plot_hex(...)
c4a_plot( palette, ..., dark = FALSE, include.na = FALSE, hex = FALSE, include.cvd = FALSE, nrows = NA, ncols = NA ) c4a_plot_cvd(...) c4a_plot_hex(...)
palette |
Palette name (see |
... |
arguments passed on to |
dark |
dark (black) background? |
include.na |
should a color for missing values be included? |
hex |
should hex codes be printed instead of color labels (or numbers)? |
include.cvd |
should color deficiency simulated colors be included? |
nrows , ncols
|
Number of rows and columns. Ignored if |
Besides the plot, a gTree
is returned silently
c4a_plot("brewer.set1", nrows=1) c4a_plot_hex("brewer.set1", nrows=1) c4a_plot_cvd("brewer.set1") c4a_plot_cvd("greens") c4a_plot_cvd("tol.pu_gn") c4a_plot(.P$cols4all$bivs$pu_gn_bivs, n = 5) c4a_plot(.P$met$bivc$monet) c4a_plot(.P$cols4all$bivd$pu_gn_bivd, n = 5) c4a_plot(.P$cols4all$bivg$gn_bivg, n = 5)
c4a_plot("brewer.set1", nrows=1) c4a_plot_hex("brewer.set1", nrows=1) c4a_plot_cvd("brewer.set1") c4a_plot_cvd("greens") c4a_plot_cvd("tol.pu_gn") c4a_plot(.P$cols4all$bivs$pu_gn_bivs, n = 5) c4a_plot(.P$met$bivc$monet) c4a_plot(.P$cols4all$bivd$pu_gn_bivd, n = 5) c4a_plot(.P$cols4all$bivg$gn_bivg, n = 5)
Get information from a cols4all palette
c4a_scores( palette = NULL, type = NULL, series = NULL, n = NA, no.match = c("message", "error", "null"), verbose = TRUE )
c4a_scores( palette = NULL, type = NULL, series = NULL, n = NA, no.match = c("message", "error", "null"), verbose = TRUE )
palette |
name of the palette |
type |
type of palettes (in case palette is not specified) |
series |
series name (in case palette is not specified) |
n |
number of colors |
no.match |
what happens is no match is found? Options: |
verbose |
should messages be printed? |
list with the following items: name, series, fullname, type, palette (colors), na (color), nmax, and reverse. The latter is TRUE
when there is a "-"
prefix before the palette name.
c4a_scores("blues3") pals = c4a_palettes(type = "cat") scores_cat7 = t(sapply(pals, c4a_scores, n = 7)) head(scores_cat7)
c4a_scores("blues3") pals = c4a_palettes(type = "cat") scores_cat7 = t(sapply(pals, c4a_scores, n = 7)) head(scores_cat7)
Import and export system data. c4a_sysdata_import
will import system data and overwrite the current system data, c4a_sysdata_export
will export the current system data, and c4a_sysdata_remove
(partly) removes system data.
c4a_sysdata_import(data) c4a_sysdata_export() c4a_sysdata_remove(fullnames = NULL, series = NULL, are.you.sure = NA)
c4a_sysdata_import(data) c4a_sysdata_export() c4a_sysdata_remove(fullnames = NULL, series = NULL, are.you.sure = NA)
data |
cols4all data (see |
fullnames |
full palette names (so in the format |
series |
a character vector of series names that should be removed (use |
are.you.sure |
are you sure you want to remove series? |
c4a_sysdata_export
returns the system data (a list)
x = c4a_sysdata_export() c4a_sysdata_import(x) y = c4a_sysdata_export() identical(x, y)
x = c4a_sysdata_export() c4a_sysdata_import(x) y = c4a_sysdata_export() identical(x, y)
col4all scales for ggplot2. The scale functions are organized as scale_<aesthetic>_<mapping>_c4a_<type>
, where the <aesthetic>
should be either colo(u)r
or fill
, <mapping>
refers to the mapping that is applied (discrete
, continuous
or binned
), and <type>
is the palette type: cat
, seq
, or div
.
scale_color_discrete_c4a_cat( palette = NULL, reverse = FALSE, order = NULL, ... ) scale_colour_discrete_c4a_cat( palette = NULL, reverse = FALSE, order = NULL, ... ) scale_fill_discrete_c4a_cat(palette = NULL, reverse = FALSE, order = NULL, ...) scale_color_discrete_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_colour_discrete_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_fill_discrete_c4a_seq(palette = NULL, reverse = FALSE, range = NULL, ...) scale_color_discrete_c4a_div( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_colour_discrete_c4a_div( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_fill_discrete_c4a_div(palette = NULL, reverse = FALSE, range = NULL, ...) scale_color_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... )
scale_color_discrete_c4a_cat( palette = NULL, reverse = FALSE, order = NULL, ... ) scale_colour_discrete_c4a_cat( palette = NULL, reverse = FALSE, order = NULL, ... ) scale_fill_discrete_c4a_cat(palette = NULL, reverse = FALSE, order = NULL, ...) scale_color_discrete_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_colour_discrete_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_fill_discrete_c4a_seq(palette = NULL, reverse = FALSE, range = NULL, ...) scale_color_discrete_c4a_div( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_colour_discrete_c4a_div( palette = NULL, reverse = FALSE, range = NULL, ... ) scale_fill_discrete_c4a_div(palette = NULL, reverse = FALSE, range = NULL, ...) scale_color_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_continuous_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_continuous_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_binned_c4a_seq( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_color_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_colour_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... ) scale_fill_binned_c4a_div( palette = NULL, reverse = FALSE, range = NULL, mid = 0, n_interp = 11, ... )
palette , reverse , order , range
|
See |
... |
parameters passed on to the underlying scale functions: |
mid |
data value that should be mapped to the mid-point of the diverging color scale |
n_interp |
number of discrete colors that should be used to interpolate the continuous color scale. Recommended to use an odd number to include the midpoint |
A ggplot2 component that defines the scale
if (require("ggplot2")) { data("diamonds") diam_exp = diamonds[diamonds$price >= 15000, ] diam_exp$clarity[1:500] = NA # discrete categorical scale ggplot(diam_exp, aes(x = carat, y = price, color = color)) + geom_point(size = 2) + scale_color_discrete_c4a_cat("carto.safe") + theme_light() # missing values c4a_plot("tol.muted", 8) ggplot(diam_exp, aes(x = carat, y = price, fill = clarity)) + geom_point(size = 2, shape = 21) + scale_fill_discrete_c4a_cat("tol.muted") + theme_light() # discrete sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = cut)) + geom_point(size = 2) + scale_color_discrete_c4a_seq("hcl.blues2") + theme_light() # continuous sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = depth)) + geom_point(size = 2) + scale_color_continuous_c4a_seq("hcl.blues2", range = c(0.4, 1)) + theme_light() # continuous diverging scale ggplot(diam_exp, aes(x = carat, y = depth, color = price)) + geom_point(size = 2) + scale_color_continuous_c4a_div("wes.zissou1", mid = mean(diam_exp$price)) + theme_light() # binned sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = depth)) + geom_point(size = 2) + scale_color_binned_c4a_seq("scico.batlow", range = c(0.4, 1)) + theme_light() }
if (require("ggplot2")) { data("diamonds") diam_exp = diamonds[diamonds$price >= 15000, ] diam_exp$clarity[1:500] = NA # discrete categorical scale ggplot(diam_exp, aes(x = carat, y = price, color = color)) + geom_point(size = 2) + scale_color_discrete_c4a_cat("carto.safe") + theme_light() # missing values c4a_plot("tol.muted", 8) ggplot(diam_exp, aes(x = carat, y = price, fill = clarity)) + geom_point(size = 2, shape = 21) + scale_fill_discrete_c4a_cat("tol.muted") + theme_light() # discrete sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = cut)) + geom_point(size = 2) + scale_color_discrete_c4a_seq("hcl.blues2") + theme_light() # continuous sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = depth)) + geom_point(size = 2) + scale_color_continuous_c4a_seq("hcl.blues2", range = c(0.4, 1)) + theme_light() # continuous diverging scale ggplot(diam_exp, aes(x = carat, y = depth, color = price)) + geom_point(size = 2) + scale_color_continuous_c4a_div("wes.zissou1", mid = mean(diam_exp$price)) + theme_light() # binned sequential scale ggplot(diam_exp, aes(x = carat, y = price, color = depth)) + geom_point(size = 2) + scale_color_binned_c4a_seq("scico.batlow", range = c(0.4, 1)) + theme_light() }